
System Principles

version 5.2

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 System Principles 1

1.1 System Principles . 1

1.1.1 Starting the System . 1

1.1.2 Restarting and Stopping the System . 2

1.1.3 Command Line Arguments . 3

1.1.4 The Boot File . 4

1.1.5 Making a Boot File . 5

1.1.6 Starting the System with a Boot File . 5

1.1.7 Code Loading Strategy . 9

1.1.8 Making an Embedded System . 10

1.1.9 The Primitive Loader . 10

1.1.10 File Types . 11

1.2 Creating a First Target System . 11

1.2.1 Introduction . 11

1.2.2 Creating a Target System . 12

1.2.3 Installing a Target System . 13

1.2.4 Starting a Target System . 13

1.2.5 System Configuration Parameters . 14

1.2.6 Differences from the Install Script . 14

1.2.7 Listing of target system.erl . 14

List of Tables 21

iiiSystem Principles

iv System Principles

Chapter 1

System Principles

1.1 System Principles

This chapter describes the strategies and options which are available to start the Erlang runtime system
of Erlang/OTP. This section includes the following topics:

� Starting the system

� Re-starting and stopping the system

� Command line arguments

� The boot file

� Code loading strategies

� Making a boot file

� Starting the system with a boot file

� Code loading strategy

� Making an embedded system

� The primitive loader.

1.1.1 Starting the System

An Erlang runtime system is started with the command:

erl [-boot B] [-config F] [-mode M] [-heart]
[-loader L] [-id Id] [-nodes N1 N2 ... Nn]
[-pa Dir1 Dir2 ... Dirn] [-pz Dir1 Dir2 ... Dirn]
[-path Dir1 Dir2 ... Dirn]
[-AppName Key Value]
[Other args]

� -boot B tells the system to use the boot file named B.boot to boot the system. This boot file is
responsible for the initial loading of the system. If B is not supplied it defaults to start.
When Erlang starts, it searches for the boot file in the current working directory and then in
$ROOT/bin, where $ROOT is the root of the Erlang distribution.
If -loader distributed -nodes N1 N2 was specified, the script is fetched from one of the
nodes N1, N2, ..., otherwise it is fetched by requesting it from the program given in the
argument to the -loader parameter.

1System Principles

Chapter 1: System Principles

� -config F tells the system to use data in the system configuration file F.config to override the
arguments contained in the application resource files for the set of applications used by this
system.

� -mode M is the mode in which the system is started. M must be either embedded or interactive.
If -mode M is omitted, it defaults to interactive. In embedded mode all, modules are loaded at
system start.

� -heart This argument starts an external program which monitors the Erlang node. If the Erlang
node hangs, or terminates abnormally, the heart program can restart the Erlang node.

� -loader L defines the loader program L which fetches code when the system is started. L is either
the atom distributed, or the name of an external program. If L is not supplied, it defaults to
efile which is the normal Erlang filer.

� -id Id gives a unique identifier to each Erlang node. If omitted, Id defaults to the atom none.
This flag is not required if the default loader efile is used. If the -sname Name or -name Name
parameters are given, Id must be the same as Name.

� -nodes N1 N2 ... Nn must be supplied if -loader distributed is specified. N1, N2,..., Nn
are Erlang node names from which the system can fetch the modules to be loaded.

� -pa Dir1 Dir2 ...Dirn defines a set of directories, Dir1, Dir2, .. Dirn which are added to
the front of the standard search path which is defined in the start-up script.

� -pz Dir1 Dir2 ...Dirn defines a set of directories, Dir1, Dir2, .. Dirn which are added to
the end of the standard search path which is defined in the start-up script.

� -path Dir1 Dir2 ...Dirn defines a set of directories, Dir1, Dir2, .. Dirn which replace
the standard search path defined in the start-up script.

� [-AppName Key Value] overrides the AppName application configuration parameter Key with
Value.

� [Other Args] are parsed in a standard manner and can be accessed by any application.

The following comments apply to the arguments listed above:

� The default loader is the program efile. Through erl prim loader, it provides a minimal file
system interface between Erlang and the local file system in order to load code.

� When -loader L is specified, the primitive code loader must know how to retrieve a boot script
with name B.boot.

� When -loader distributed -nodes N1 N2 ... Nn is specified, the boot servers with
registered names boot server are assumed to be running on all Erlang nodes N1, N2, ..., Nn.
If they are not, the system waits for these boot servers to start. Requests are sent to these boot
servers to obtain files with names fId, Nameg (Id is specified in the command line arguments).
The boot servers must know how to map these names onto local file names. A simple boot server
erl boot server is provided with the system.

� The boot file with extension .boot is created by evaluating the expression
systools:script2boot("File"). This function converts the script file File.script to a boot
file File.boot.

1.1.2 Restarting and Stopping the System

The system is restarted and stopped with the following commands:

� init:restart(). This command restarts the system inside the running Erlang node. All
applications are taken down smoothly, and all code is unloaded before the system is started again
in the same way as it was started initially.

2 System Principles

1.1: System Principles

� init:reboot(). All applications are taken down smoothly, and all code is unloaded before the
Erlang node terminates. The heart argument affects the reboot sequence as follows:

1. If the -heart argument was supplied, the heart program tries to reboot according to the
HEART COMMAND environment variable.

2. If this variable is not set, heart simply writes to std out that it should have rebooted.
3. If HEART COMMAND is /usr/sbin/reboot, the whole machine is rebooted.

� init:stop(). All applications are taken down smoothly, and all code is unloaded. If the -heart
argument was supplied, the heart program is terminated before the Erlang node terminates.

1.1.3 Command Line Arguments

When the system has started, application programs can access the values of the command line
arguments by calling one of the functions init:get argument(Key), or init:get arguments().

Erlang was started by giving a command of the form:

erl -flag1 arg1 arg2 -flag2 arg3 ...

When the erl -flag1 ... command has been issued, Erlang starts by spawning a new process and the
system behaves as if the function spawn(init, boot, [Args]) had been evaluated. Args is a list of all
the command line arguments to erl. These are passed as strings. For example, the command erl -id
123 -loader efile -script "abc" ... causes the system to behave as if it had evaluated the
following function:

spawn(init, boot, ["-id", "123", "-loader", "efile",
"-script", "\"abc\""]).

The first thing init does is to call init:parse args(Args) to “normalize” the input arguments. After
normalization, the arguments can be accessed as follows:

� init:get argument(Flag) -> fok, [[Arg]]g | error tries to fetch the argument associated
with Flag. The return value is either a list of argument lists, or the atom error. Flags can have
multiple values. If the command line was erl -p1 a b c -p2 a x -p1 ww zz:

– init:get argument(p1) would return:

{ok, [["a", "b", "c"], ["ww", "zz"]]}

– init:get argument(p2) would return:

{ok, [["a", "x"]]}

This is why get argument returns a list of lists, and not just a list.

� init:get arguments() -> [fFlag, [Arg]g] returns all the command line arguments. For the
command line given above, this would return:

[{p1,["a","b","c"]}, {p2,["a","x"]}, {p1,["ww","zz"]}]

Both get arguments/0 and get argument/1 preserve the argument order of the arguments supplied
with the command line.

Note:
Applications should not normally be configured with command line flags, but should use the
application environment instead. Refer to Configuring an Application in the Design Principles
chapter for details.

3System Principles

Chapter 1: System Principles

1.1.4 The Boot File

The boot script is stored in a file with the extension .script

A typical boot script file may look as follows:

fscript, fName, Vsng,
[
fprogress, loadingg,
fpreLoaded, [Mod1, Mod2, ...]g,
fpath, [Dir1,"$ROOT/Dir",...]g.
fprimLoad, [Mod1, Mod2, ...]g,
...
fkernel load completedg,
fprogress, loadedg,
fkernelProcess, Name, fMod, Func, Argsgg,
...
fapply, fMod, Func, Argsgg,
...
fprogress, startedg]g.

The meanings of these terms are as follows:

� fscript, fName, Vsng,...g defines the script name and version.

� fprogress, Termg sets the “progress” of the initialization program. The function
init:get status() returns the current value of the progress, which is
fInternalStatus,Progressg.

� fpath, [Dir]g. Dir is a string. This argument sets the load path of the system to [Dir]. The
load path used to load modules is obtained from the initial load path, which is given in the script
file, together with any path flags which were supplied in the command line arguments. The
command line arguments modify the path as follows:

– -pa Dir1 Dir2 ... Dirn adds the directories Dir1, Dir2, ..., Dirn to the front of the
initial load path.

– -pz Dir1 Dir2 ... Dirn adds the directories Dir1, Dir2, ..., Dirn to the end of the
initial load path.

– -path Dir1 Dir2 ... Dirn defines a set of directories Dir1, Dir2, ..., Dirn which
replaces the search path given in the script file. Directory names in the path are interpreted
as follows:

� Directory names starting with / are assumed to be absolute path names.
� Directory names not starting with / are assumed to be relative to the current working

directory.
� The special $ROOT variable can only be used in the script, not as a command line

argument. The given directory is relative to the Erlang installation directory.

� fprimLoad, [Mod]g loads the modules [Mod] from the directories specified in Path. The script
interpreter fetches the appropriate module by calling the function
erl prim loader:get file(Mod). A fatal error which terminates the system will occur if the
module cannot be located.

� fkernel load completedg indicates that all modules which must be loaded before any processes
are started are loaded. In interactive mode, all fprimLoad,[Mod]g commands interpreted after
this command are ignored, and these modules are loaded on demand. In embedded mode,
kernel load completed is ignored, and all modules are loaded during system start.

4 System Principles

1.1: System Principles

� fkernelProcess, Name, fMod, Func, Argsgg starts a “kernel process”. The kernel process Name
is started by evaluating apply(Mod, Func, Args) which is expected to return fok, Pidg or
ignore. The init process monitors the behaviour of Pid and terminates the system if Pid dies.
Kernel processes are key components of the runtime system. Users do not normally add new
kernel processes.

� fapply, fMod, Func, Argsgg, The init process simply evaluates apply(Mod, Func, Args).
The system terminates if this results in an error. The boot procedure hangs if this function never
returns.

Note:
In the interactive system the code loader provides demand driven code loading, but in the
embedded system the code loader loads all the code immediately. The same version of code is used in
both cases. The code server calls init:get argument(mode) to find out if it should run in demand
mode, or non-demand driven mode.

1.1.5 Making a Boot File

If a boot script is written manually, the systools:script2boot(File) function can be used to
generate the compiled (binary) form File.boot from the File.script file. However, it is
recommended that the systools:make script function is used in order to create a boot script.

1.1.6 Starting the System with a Boot File

The command erl -boot File starts the system with a boot file called File.boot. An ASCII version
of the boot file can be found in File.script.

The boot file is created by evaluating:

systools:script2boot(File)

Several standard boot files are available. For example, start.script starts the system as a plain Erlang
runtime system with the application controller and the kernel applications.

start.script

The start.script is as follows:

{script,{"OTP APN 181 01","R1A"},
[{preLoaded,[init,erl_prim_loader]},
{progress,preloaded},
{path,["$ROOT/lib/kernel-1.1/ebin",

"$ROOT/lib/stdlib-1.1/ebin"]},
{primLoad,[error_handler,

ets,
lib,
lists,
slave,
heart,

5System Principles

Chapter 1: System Principles

application_controller,
application_master,
application,
auth,
c,
calendar,
code,
erlang,
erl_distribution,
erl_parse,
erl_scan,
io_lib,
io_lib_format,
io_lib_fread,
io_lib_pretty,
error_logger,
file,
gen,
gen_event,
gen_server,
global,
kernel,
net_kernel,
proc_lib,
rpc,
supervisor,
sys]},

{kernel_load_completed},
{progress,kernel_load_completed},
{primLoad,[group,

user,
user_drv,
kernel_config,
net,
erl_boot_server,
net_adm]},

{primLoad,[math,
random,
ordsets,
shell_default,
timer,
gen_fsm,
pg,
unix,
dict,
pool,
string,
digraph,
io,
epp,
log_mf_h,
queue,
erl_eval,

6 System Principles

1.1: System Principles

erl_id_trans,
shell,
erl_internal,
erl_lint,
error_logger_file_h,
error_logger_tty_h,
edlin,
erl_pp,
dets,
regexp,
supervisor_bridge]},

{progress,modules_loaded},
{kernelProcess,heart,{heart,start,[]}},
{kernelProcess,error_logger,{error_logger,start_link,[]}},
{kernelProcess,application_controller,

{application_controller,
start,
[{application,

kernel,
[{description,"ERTS CXC 138 10"},
{vsn,"1.1"},
{modules,

[{application,1},
{erlang,1},
{group,1},
{rpc,1},
{application_controller,1},
{error_handler,1},
{heart,1},
{application_master,1},
{error_logger,1},
{init,1},
{user,1},
{auth,1},
{kernel,1},
{user_drv,1},
{code,1},
{kernel_config,1},
{net,1},
{erl_boot_server,1},
{erl_prim_loader,1},
{file,1},
{net_adm,1},
{erl_distribution,1},
{global,1},
{net_kernel,1}]},

{registered,
[init,
erl_prim_loader,
heart,
error_logger,
application_controller,
kernel_sup,

7System Principles

Chapter 1: System Principles

kernel_config,
net_sup,
net_kernel,
auth,
code_server,
file_server,
boot_server,
global_name_server,
rex,
user]},

{applications,[]},
{env,

[{error_logger,tty},
{os, {unix, ’solaris’}}]},

{maxT,infinity},
{maxP,infinity},
{mod,{kernel,[]}}]}]}},

{progress,init_kernel_started},
{apply,{application,load,

[{application,
stdlib,
[{description,"ERTS CXC 138 10"},
{vsn,"1.1"},
{modules,

[{c,1},
{gen,1},
{io_lib_format,1},
{math,1},
{random,1},
{sys,1},
{calendar,1},
{gen_event,1},
{io_lib_fread,1},
{ordsets,1},
{shell_default,1},
{timer,1},
{gen_fsm,1},
{io_lib_pretty,1},
{pg,1},
{slave,1},
{unix,1},
{dict,1},
{gen_server,1},
{lib,1},
{pool,1},
{string,1},
{digraph,1},
{io,1},
{lists,1},
{proc_lib,1},
{supervisor,1},
{epp,1},
{io_lib,1},

8 System Principles

1.1: System Principles

{log_mf_h,1},
{queue,1},
{erl_eval,1},
{erl_id_trans,1},
{shell,1},
{erl_internal,1},
{erl_lint,1},
{error_logger_file_h,1},
{erl_parse,1},
{error_logger_tty_h,1},
{edlin,1},
{erl_pp,1},
{ets,1},
{dets,1},
{regexp,1},
{erl_scan,1},
{supervisor_bridge,1}]},

{registered,
[timer_server,
rsh_starter,
take_over_monitor,
pool_master,
dets]},

{applications,[kernel]},
{env,[]},
{maxT,infinity},
{maxP,infinity}]}]}},

{progress,applications_loaded},
{apply,{application,start_boot,[kernel,permanent]}},
{apply,{application,start_boot,[stdlib,permanent]}},
{apply,{c,erlangrc,[]}},
{progress,started}]}.

1.1.7 Code Loading Strategy

The code is always loaded relative to the current path and this path is obtained from the value given in
the script file, possibly modified by the path manipulation flags in the command line.

This approach allows us to run the system in a number of different ways:

� Interactive mode. The system dynamically loads code on demand from the directories specified in
the path command. This is the “normal” way to develop code.

� Embedded mode. The system loads all its code during system start-up. In special cases, all code can
be located in a single directory. We would copy all files to a given directory and create a path to
this directory only.

� Test mode. Test mode is typically used if we want to run some new test code together with a
particular release of the embedded system. We want all the convenience of the interactive system
with code loading on demand, and the rigor of the embedded system. In test mode, we run the
system with command line arguments such as -pa ".".

9System Principles

Chapter 1: System Principles

1.1.8 Making an Embedded System

When using the the interactive Erlang development environment, it often does not matter if things go
wrong at runtime. The main difference with an embedded system is that it is extremely important that
things do not go wrong at runtime.

Before building a release which is targeted for an embedded system, we must perform a large number of
compile-time checks on the code.

A boot script file can be created with the systools:make script function. This function reads a .rel
release file and generates the boot script in accordance with the specified applications in the release file.
A boot script which is generated this way ensures that all code specified in the application resource files
are loaded and that all specified applications are started.

A complete release can be packaged with the systools:make tar function . All application directories
and files are packaged according to the release file. The release file and the release upgrade script are
also included in the release package.

1.1.9 The Primitive Loader

Unlike the Erlang node, the primitive file loader “knows” how to fetch modules and scripts from its
environment.

The interface to the primitive loader is as follows:

� erl prim loader:start(Id, L, Nodes) -> ok | error starts the primitive loader with the
arguments given in the command line.

� erl prim loader:set path([Dir]) -> ok sets the path given in the boot file. The value of
[Dir] comes from the command fpath, [Dir]g in the start-up script combined with the
command line arguments.

� erl prim loader:get path() -> fok,Pathg returns the Path used by the primitive loader.

� erl prim loader:get file(File) -> fok, FullName, Bing | error loads a file from the
current path. File is either an absolute file name or just the name of the file, for example
lists.beam. FullName is the name of the file if the load succeeds. Bin is the contents of the file
as a binary.

Note:
We assume the primitive loader to be running as long as the Erlang node is up and running. In the
interactive mode, the code server fetches all code through the loader and the
application controller fetches configuration and application files this way.

If an other loader than the one distributed with the system is required, this loader must be
implemented by the user as an external port program. The Loader provided by the user must fulfill a
protocol defined for the erl prim loader, and it will be started by the erl prim loader using the
open port(fspawn,Loaderg,[binary]) function call. Refer to the Reference Manual for more
information.

10 System Principles

1.2: Creating a First Target System

1.1.10 File Types

The following file types are defined in Erlang/OTP:

Type File name/Extension Description Manual page which de-
scribes the file syntax

module .erl Erlang code -

application .app Application resource file app(4)

release .rel Release resource file rel(4)

script .script Start script script(4)

boot .boot Binary boot file -

config .config Configuration file - used to
override values in the .app

files

config(4)

application upgrade .appup Application upgrade appup(4)

release upgrade script relup Release upgrade script relup(4)

Table 1.1: File Types

1.2 Creating a First Target System

1.2.1 Introduction

Often it is not desirable to use an Erlang/OTP system as is. A developer may create new Erlang/OTP
compliant applications for a particular purpose, and several original Erlang/OTP applications may be
irrelevant for the purpose in question. Thus, there is a need to be able to create a new system based on
a given Erlang/OTP system, where dispensable applications are removed, and a set of new applications
that are included in the new system. Documentation and source code is irrelevant and is therefore not
included in the new system.

This chapter is about creating such a system, which we call a target system.

In the following sections we consider creating target systems with different requirements of
functionality:

� a basic target system that can be started by calling the ordinary erl script,

� a simple target system where also code replacement in run-time can be performed, and

� an embedded target system where there is also support for logging output from the system to file
for later inspection, and where the system can be started automatically at boot time.

We only consider the case when Erlang/OTP is running on a UNIX system.

There is an example Erlang module target system.erl that contains functions for creating and
installing a target system. That module is used in the examples below. The source code of the module is
listed at the end of this chapter.

11System Principles

Chapter 1: System Principles

1.2.2 Creating a Target System

It is assumed that you have a working Erlang/OTP system (which you can start with the command erl).

Step 1. First create a .rel file (see the rel(4) manual page for details) that specifies the erts version and
lists all applications that should be included in the new basic target system. An example is the following
mysystem.rel file:

%% mysystem.rel
{release,
{"MYSYSTEM", "FIRST"},
{erts, "5.1"},
[{kernel, "2.7"},
{stdlib, "1.10"},
{sasl, "1.9.3"},
{pea, "1.0"}]}.

The listed applications are not only original Erlang/OTP applications but possibly also new applications
that you have written yourself (here examplified by the application pea).

Step 2. From the directory where the mysystem.rel and plain.rel files reside, start the Erlang/OTP
system:

erl -pa /home/user/target_system/myapps/pea-1.0/ebin

where also the path to the pea-1.0 ebin directory is provided.

Step 2. Now create the target system:

1> target_system:create("mysystem").

The target system:create/1 function does the following:

1. Reads the mysystem.rel file, and creates a new file plain.rel which is identical to former,
except that it only lists the kernel and stdlib applications.

2. From the mysystem.rel and plain.rel files creates the files mysystem.script, mysystem.boot,
plain.script, and plain.boot through a call to systools:make script/2.

3. Creates the file mysystem.tar.gz by a call to systools:make tar/2. That file has the following
contents:

erts-5.1/bin/
releases/FIRST/start.boot
releases/mysystem.rel
lib/kernel-2.7/
lib/stdlib-1.10/
lib/sasl-1.9.3/
lib/pea-1.0/

The file releases/FIRST/start.boot is a copy of our mysystem.boot, and a copy of the original
mysystem.rel has been put in the releases directory.

4. Creates the temporary directory tmp and extracts the tar file mysystem.tar.gz into that directory.

5. Deletes the erl and start files from tmp/erts-5.1/bin. XXX Why.

6. Creates the directory tmp/bin.

7. Copies the previously creates file plain.boot to tmp/bin/start.boot.

12 System Principles

1.2: Creating a First Target System

8. Copies the files epmd, run erl, and to erl from the directory tmp/erts-5.1/bin to the directory
tmp/bin.

9. Creates the file tmp/releases/start erl.data with the contents “5.1 FIRST”.

10. Recreates the file mysystem.tar.gz from the directories in the directory tmp, and removes tmp.

1.2.3 Installing a Target System

Step 3. Install the created target system in a suitable directory.

3> target_system:install("mysystem", "/usr/local/erl-target").

The function target system:install/2 does the following:

1. Extracts the tar file mysystem.tar.gz into the target directory /usr/local/erl-target.

2. In the target directory reads the file releases/start erl.data in order to find the Erlang
runtime system version (“5.1”).

3. Substitutes %FINAL ROOTDIR% and %EMU% for /usr/local/erl-target and beam, respectively, in
the files erl.src, start.src, and start erl.src of the target erts-5.1/bin directory, and puts
the resulting files erl, start, and run erl in the target bin directory.

4. Finally the target releases/RELEASES file is created from data in the releases/mysystem.rel
file.

1.2.4 Starting a Target System

Now we have a target system that can be started in various ways.

We start it as a basic target system by invoking

/usr/local/erl-target/erl

where only the kernel and stdlib applications are started, i.e. the system is started as an ordinary
development system. There are only two files needed for all this to work: bin/erl file (obtained from
erts-5.1/bin/erl.src) and the bin/start.boot file (a copy of plain.boot).

We can also start a distributed system (requires bin/epmd).

To start all applications specified in the original mysystem.rel file, use the -boot flag as follows:

/usr/local/erl-target/erl -boot /usr/local/erl-target/releases/FIRST/start

We start a simple target system as above. The only difference is that also the file releases/RELEASES is
present for code replacement in run-time to work.

To start an embedded target system the shell script bin/start is used. That shell script calls
bin/run erl, which in turn calls bin/start erl (roughly, start erl is an embedded variant of erl).

The shell script start is only an example. You should edit it to suite your needs. Typically it is
executed when the UNIX system boots.

run erl is a wrapper that provides logging of output from the run-time system to file. It also provides a
simple mechanism for attaching to the Erlang shell (to erl).

start erl requires the root directory ("/usr/local/erl-target"), the releases directory
("/usr/local/erl-target/releases"), and the location of the start erl.data file. It reads the

13System Principles

Chapter 1: System Principles

run-time system version ("5.1") and release version ("FIRST") from the start erl.data file, starts the
run-time system of the version found, and provides -boot flag specifying the boot file of the release
version found ("releases/FIRST/start.boot").

start erl also assumes that there is sys.config in release version directory
("releases/FIRST/sys.config). That is the topic of the next section (see below).

The start erl shell script should normally not be altered by the user.

1.2.5 System Configuration Parameters

As was pointed out above start erl requires a sys.config in the release version directory
("releases/FIRST/sys.config"). If there is no such a file, the system start will fail. Hence such a file
has to added as well.

If you have system configuration data that are neither file location dependent nor site dependent, it may
be convenient to create the sys.config early, so that it becomes a part of the target system tar file
created by target system:create/1. In fact, if you create, in the current directory, not only the
mysystem.rel file, but also a sys.config file, that latter file will be tacitly put in the apropriate
directory.

1.2.6 Differences from the Install Script

The above install/2 procedure differs somewhat from that of the ordinary Install shell script. In
fact, create/1 makes the release package as complete as possible, and leave to the install/2
procedure to finish by only considering location dependent files.

1.2.7 Listing of target system.erl

-module(target_system).
-include_lib("kernel/include/file.hrl").
-export([create/1, install/2]).
-define(BUFSIZE, 8192).

%% Note: RelFileName below is the *stem* without trailing .rel,
%% .script etc.
%%

%% create(RelFileName)
%%
create(RelFileName) ->

RelFile = RelFileName ++ ".rel",
io:fwrite("Reading file: \"~s\" ...~n", [RelFile]),
{ok, [RelSpec]} = file:consult(RelFile),
io:fwrite("Creating file: \"~s\" from \"~s\" ...~n",

["plain.rel", RelFile]),
{release,
{RelName, RelVsn},
{erts, ErtsVsn},
AppVsns} = RelSpec,
PlainRelSpec = {release,

{RelName, RelVsn},
{erts, ErtsVsn},

14 System Principles

1.2: Creating a First Target System

lists:filter(fun({kernel, _}) ->
true;

({stdlib, _}) ->
true;

(_) ->
false

end, AppVsns)
},

{ok, Fd} = file:open("plain.rel", [write]),
io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
file:close(Fd),

io:fwrite("Making \"plain.script\" and \"plain.boot\" files ...~n"),
make_script("plain"),

io:fwrite("Making \"~s.script\" and \"~s.boot\" files ...~n",
[RelFileName, RelFileName]),

make_script(RelFileName),

TarFileName = io_lib:fwrite("~s.tar.gz", [RelFileName]),
io:fwrite("Creating tar file \"~s\" ...~n", [TarFileName]),
make_tar(RelFileName),

io:fwrite("Creating directory \"tmp\" ...~n"),
file:make_dir("tmp"),

io:fwrite("Extracting \"~s\" into directory \"tmp\" ...~n", [TarFileName]),
extract_tar(TarFileName, "tmp"),

TmpBinDir = filename:join(["tmp", "bin"]),
ErtsBinDir = filename:join(["tmp", "erts-" ++ ErtsVsn, "bin"]),
io:fwrite("Deleting \"erl\" and \"start\" in directory \"~s\" ...~n",

[ErtsBinDir]),
file:delete(filename:join([ErtsBinDir, "erl"])),
file:delete(filename:join([ErtsBinDir, "start"])),

io:fwrite("Creating temporary directory \"~s\" ...~n", [TmpBinDir]),
file:make_dir(TmpBinDir),

io:fwrite("Copying file \"plain.boot\" to \"~s\" ...~n",
[filename:join([TmpBinDir, "start.boot"])]),

copy_file("plain.boot", filename:join([TmpBinDir, "start.boot"])),

io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
"\"~s\" to \"~s\" ...~n",
[ErtsBinDir, TmpBinDir]),

copy_file(filename:join([ErtsBinDir, "epmd"]),
filename:join([TmpBinDir, "epmd"]), [preserve]),

copy_file(filename:join([ErtsBinDir, "run_erl"]),
filename:join([TmpBinDir, "run_erl"]), [preserve]),

copy_file(filename:join([ErtsBinDir, "to_erl"]),
filename:join([TmpBinDir, "to_erl"]), [preserve]),

15System Principles

Chapter 1: System Principles

StartErlDataFile = filename:join(["tmp", "releases", "start_erl.data"]),
io:fwrite("Creating \"~s\" ...~n", [StartErlDataFile]),
StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
write_file(StartErlDataFile, StartErlData),

io:fwrite("Recreating tar file \"~s\" from contents in directory "
"\"tmp\" ...~n", [TarFileName]),

{ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
{ok, Cwd} = file:get_cwd(),
file:set_cwd("tmp"),
erl_tar:add(Tar, "bin", []),
erl_tar:add(Tar, "erts-" ++ ErtsVsn, []),
erl_tar:add(Tar, "releases", []),
erl_tar:add(Tar, "lib", []),
erl_tar:close(Tar),
file:set_cwd(Cwd),
io:fwrite("Removing directory \"tmp\" ...~n"),
remove_dir_tree("tmp"),
ok.

install(RelFileName, RootDir) ->
TarFile = RelFileName ++ ".tar.gz",
io:fwrite("Extracting ~s ...~n", [TarFile]),
extract_tar(TarFile, RootDir),
StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
{ok, StartErlData} = read_txt_file(StartErlDataFile),
[ErlVsn, RelVsn| _] = string:tokens(StartErlData, " \n"),
ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
BinDir = filename:join([RootDir, "bin"]),
io:fwrite("Substituting in erl.src, start.src and start_erl.src to\n"

"form erl, start and start_erl ...\n"),
subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir,

[{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
[preserve]),

io:fwrite("Creating the RELEASES file ...\n"),
create_RELEASES(RootDir,

filename:join([RootDir, "releases", RelFileName])).

%% LOCALS

%% make_script(RelFileName)
%%
make_script(RelFileName) ->

Opts = [no_module_tests],
systools:make_script(RelFileName, Opts).

%% make_tar(RelFileName)
%%
make_tar(RelFileName) ->

RootDir = code:root_dir(),
systools:make_tar(RelFileName, [{erts, RootDir}]).

16 System Principles

1.2: Creating a First Target System

%% extract_tar(TarFile, DestDir)
%%
extract_tar(TarFile, DestDir) ->

erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).

create_RELEASES(DestDir, RelFileName) ->
release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").

subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
lists:foreach(fun(Script) ->

subst_src_script(Script, SrcDir, DestDir,
Vars, Opts)

end, Scripts).

subst_src_script(Script, SrcDir, DestDir, Vars, Opts) ->
subst_file(filename:join([SrcDir, Script ++ ".src"]),

filename:join([DestDir, Script]),
Vars, Opts).

subst_file(Src, Dest, Vars, Opts) ->
{ok, Conts} = read_txt_file(Src),
NConts = subst(Conts, Vars),
write_file(Dest, NConts),
case lists:member(preserve, Opts) of

true ->
{ok, FileInfo} = file:read_file_info(Src),
file:write_file_info(Dest, FileInfo);

false ->
ok

end.

%% subst(Str, Vars)
%% Vars = [{Var, Val}]
%% Var = Val = string()
%% Substitute all occurrences of %Var% for Val in Str, using the list
%% of variables in Vars.
%%
subst(Str, Vars) ->

subst(Str, Vars, []).

subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
subst_var([C| Rest], Vars, Result, []);

subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
subst_var([C| Rest], Vars, Result, []);

subst([$%, C| Rest], Vars, Result) when C == $_ ->
subst_var([C| Rest], Vars, Result, []);

subst([C| Rest], Vars, Result) ->
subst(Rest, Vars, [C| Result]);

subst([], _Vars, Result) ->
lists:reverse(Result).

subst_var([$%| Rest], Vars, Result, VarAcc) ->
Key = lists:reverse(VarAcc),

17System Principles

Chapter 1: System Principles

case lists:keysearch(Key, 1, Vars) of
{value, {Key, Value}} ->

subst(Rest, Vars, lists:reverse(Value, Result));
false ->

subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
end;

subst_var([C| Rest], Vars, Result, VarAcc) ->
subst_var(Rest, Vars, Result, [C| VarAcc]);

subst_var([], Vars, Result, VarAcc) ->
subst([], Vars, [VarAcc ++ [$%| Result]]).

copy_file(Src, Dest) ->
copy_file(Src, Dest, []).

copy_file(Src, Dest, Opts) ->
{ok, InFd} = file:rawopen(Src, {binary, read}),
{ok, OutFd} = file:rawopen(Dest, {binary, write}),
do_copy_file(InFd, OutFd),
file:close(InFd),
file:close(OutFd),
case lists:member(preserve, Opts) of

true ->
{ok, FileInfo} = file:read_file_info(Src),
file:write_file_info(Dest, FileInfo);

false ->
ok

end.

do_copy_file(InFd, OutFd) ->
case file:read(InFd, ?BUFSIZE) of

{ok, Bin} ->
file:write(OutFd, Bin),
do_copy_file(InFd, OutFd);

eof ->
ok

end.

write_file(FName, Conts) ->
{ok, Fd} = file:open(FName, [write]),
file:write(Fd, Conts),
file:close(Fd).

read_txt_file(File) ->
{ok, Bin} = file:read_file(File),
{ok, binary_to_list(Bin)}.

remove_dir_tree(Dir) ->
remove_all_files(".", [Dir]).

remove_all_files(Dir, Files) ->
lists:foreach(fun(File) ->

FilePath = filename:join([Dir, File]),
{ok, FileInfo} = file:read_file_info(FilePath),

18 System Principles

1.2: Creating a First Target System

case FileInfo#file_info.type of
directory ->

{ok, DirFiles} = file:list_dir(FilePath),
remove_all_files(FilePath, DirFiles),
file:del_dir(FilePath);

_ ->
file:delete(FilePath)

end
end, Files).

19System Principles

Chapter 1: System Principles

20 System Principles

List of Tables

1.1 File Types . 11

21System Principles

